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Abstract. In this study we present column-averaged dry-air mole fractions of CO2 (XCO2), CH4 (XCH4) and CO (XCO)

from a recently established measurement site in Gobabeb, Namibia. Gobabeb is a hyperarid desert site at the sharp transition

zone between the sand desert and the gravel plains, offering unique characteristics with respect to surface albedo properties.

Measurements started January 2015 and are performed utilizing a ground-based Fourier transform infrared (FTIR) EM27/SUN

spectrometer of the COllaborative Carbon Column Observing Network (COCCON). Gobabeb is the first measurement site5

observing XCO2 and XCH4 on the African mainland and improves the global coverage of ground-based remote-sensing

sites. In order to achieve the high level of precision and accuracy necessary for meaningful greenhouse gas observations, we

performed calibration measurements for eight days between November 2015 and March 2016 with the COCCON reference

EM27/SUN spectrometer operated at the Karlsruhe Institute of Technology. We derived scaling factors for XCO2, XCH4

and XCO with respect to the reference instrument that are close to 1.0. We compare the results obtained in Gobabeb to10

measurements at Reunion Island and Lauder from the Total Carbon Column Observing Network (TCCON). We choose these

TCCON sites because, while 4000 km apart, the instruments at Gobabeb and Reunion Island operate at roughly the same

latitude. The Lauder station is the southernmost TCCON station and functions as a background site without a pronounced

XCO2 seasonal cycle. We find a good agreement for the absolute Xgas values and representative diurnal variability. Together

with the absence of long term drifts this highlights the quality of the COCCON measurements. In Southern hemispheric15

summer we observe lower XCO2 values at Gobabeb compared to the TCCON stations, likely due to the influence of the

African biosphere. We performed coincident measurements with the Greenhouse Gases Observing Satellite (GOSAT), where

GOSAT observed three nearby specific observation points, over the sand desert south of the station, directly over Gobabeb and

over the gravel plains to the north. GOSAT H-gain XCO2 and XCH4 agree with the EM27/SUN measurements within the 1

σ uncertainty limit. The number of coincidence soundings is limited, but we confirm a bias of 1.2 - 2.6 ppm between GOSAT20
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M-gain and H-gain XCO2 soundings depending on the target point. This is in agreement with results reported by a previous

study and the GOSAT validation team. We also report a bias of 5.9 - 9.8 ppb between GOSAT M-gain and H-gain XCH4

measurements which is within the range given by the GOSAT validation team. Finally we use the COCCON measurements to

evaluate inversion-optimized CAMS model data. For XCO2 we find high biases of 0.9 ± 0.5 ppm for the OCO-2 assimilated

product and 1.1 ± 0.6 ppm for the in situ-driven product with R2 > 0.9 in both cases. These biases are comparable to reported25

offsets between the model and TCCON data. The OCO-2 assimilated model product is able to reproduce the drawdown of

XCO2 observed by the COCCON instrument beginning of 2017, opposed to the in situ-optimized product. Also for XCH4 the

observed biases are in line with prior model comparisons with TCCON.

1 Introduction

In 2019, the concentrations of the most important anthropogenic greenhouse gases (GHGs), carbon dioxide (CO2) and methane30

(CH4), have risen to unprecedented values since the beginning of high-frequency observational records (Dlugokencky et al.,

2019a, b). Additionally, it was stated recently that fossil CO2 emissions exceeded 10 GtCyr−1 for the first time in history

(Friedlingstein et al., 2019). Precise and accurate global observations of GHGs are therefore important for the estimation of

emission strengths, flux changes (Olsen and Randerson, 2004) and model evaluation. Furthermore, these measurements can

be directly used for the verification of climate mitigation actions as demanded by international treaties, e.g. the Paris COP2135

agreement (https://unfccc.int/files/essential_background/convention/application/pdf/english_paris_agreement.pdf, last access:

15 October 2020).

Satellites like the Greenhouse Gases Observing Satellite (GOSAT) (Kuze et al., 2009; Morino et al., 2011; Yoshida et al.,

2013), Orbiting Carbon Observatory-2 (OCO-2) (Frankenberg et al., 2015; Crisp et al., 2017; Eldering et al., 2017), Orbiting

Carbon Observatory-3 (OCO-3) (Eldering et al., 2019), SENTINEL5-Precursor (S5P) (Veefkind et al., 2012) or Greenhouse40

Gases Observing Satellite-2 (GOSAT-2) (Suto et al., 2020) are well suited candidates for this task as they retrieve total column

abundances of atmospheric GHGs on a global scale. However, current satellites, while offering quasi-global spatial coverage,

have coarse temporal resolution. The OCO-2 repeat cycle is 16 days, the GOSAT-2 repeat cycle is 6 days. S5P offers daily

global coverage of CH4 and CO. However, the measurements are mostly around local noon time. Future geostationary satel-

lites will likely help to overcome this shortcoming (Moore III et al., 2018; Nivitanont et al., 2019). Due to the fact that satellites45

measure backscattered sunlight from the surface of the earth and its atmosphere, retrievals of GHGs are complicated and biases

can easily occur which need to be recognized and - if possible - corrected. Therefore satellite measurements are commonly

validated against ground-based remote-sensing instruments as these measurements are not influenced by surface albedo effects

and only minimally affected by aerosols (Dils et al., 2014; Wunch et al., 2017). The Total Carbon Column Observing Net-

work (TCCON) is a ground-based network retrieving total columns of GHGs with reference precision and accuracy utilizing50

high-resolution solar-viewing Fourier transform infrared (FTIR) spectrometers (Wunch et al., 2011; Washenfelder et al., 2006).

TCCON is the reference instrument and primary validation source for current satellites (Inoue et al., 2016; Wu et al., 2018;

Borsdorff et al., 2018).
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Recently, in an effort to further improve the global coverage of ground-based observations, the COllaborative Carbon Column

Observing Network (COCCON) was established (Frey et al., 2019). This network employs compact, portable FTIR spectrom-55

eters. The spectrometers used have been developed by KIT in cooperation with Bruker (Gisi et al., 2012; Hase et al., 2016) and

are commercially available since 2014 (type designation EM27/SUN spectrometer). While lately a COCCON spectrometer

was used in combination with two TCCON instruments to validate OCO-2 (Jacobs et al., 2020), to study boreal forests (Tu

et al., 2020) and recently Velazco et al. (2019) performed a campaign to validate GOSAT in central Australia, until now the

major activity of the emerging network was to create the capability of permanent COCCON measurements at remote sites as60

a supplement of the existing TCCON stations by developing the procedures for ensuring proper calibration and by providing

the required evidence of the long-term stability of the EM27/SUN spectrometer (Frey et al., 2015, 2019; Sha et al., 2020).

Tasks which can be accomplished by performing differential measurements using several spectrometers which can be cali-

brated side-by-side in the framework of campaigns are easier to achieve. Many successful campaigns for quantifying GHG

emission strengths from regions of interest, as cities, coal mines, large dairy farms, etc., by arranging several spectrometers65

have been performed successfully using EM27/SUN spectrometers in the recent past (Hase et al., 2015; Vogel et al., 2019;

Makarova et al., 2020; Viatte et al., 2017; Kille et al., 2019; Butz et al., 2017; Luther et al., 2019). In this work we introduce a

COCCON station in Gobabeb, Namibia, where measurements are being conducted since January 2015. The remainder of this

paper is structured as follows. In section 2 we describe the measurement site, used instrumentation and data analysis, focusing

on the COCCON EM27/SUN spectrometer. In section 3 we present the measurement results obtained over the last four years.70

In section 4 a comparison with respect to TCCON stations at Reunion Island and Lauder is conducted to illustrate the feasibil-

ity of our results. Additionally, the COCCON instrument is used to validate specific target mode observations from GOSAT,

confirming a previously reported bias between GOSAT M-gain and H-gain soundings for XCO2 (Velazco et al., 2019), and

for the first time also reporting a bias in XCH4 for the different gain settings. We also compare our measurements to CAMS

inversion-optimized model data. In section 5 the results are discussed and an outlook for further studies is given.75

2 Gobabeb site description, instrumentation and data analysis

2.1 Gobabeb site description

In 2015, we installed an EM27/SUN spectrometer of the COCCON network at the Gobabeb Namib Research Institute in

Namibia (23.561◦S, 15.042◦E, 410 m a.s.l.), see inset of Fig. 1. Gobabeb is located at the center of the hyperarid Namib desert.

Moreover, Gobabeb is positioned next to the Kuiseb river, which marks the sharp transition zone between the gravel plains80

to the north and the sand desert to the south of the station, see Fig. 1. Gobabeb is situated 60 km east of the Atlantic ocean

and the site is approximately 80 km southeast of the closest town, Walvis Bay, with a population of about 50000. The site

is uninfluenced by nearby local emission sources of GHGs. Southwesterly winds prevail during austral summer, whereas in

winter easterly winds are predominant. The maximum temperature in summer can exceed 40 ◦C. Gobabeb is a high albedo

station, together with the changing terrain this results in unique site characteristics desirable especially for satellite validation85

studies.
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2.2 Description and history of the COCCON spectrometer operated at Gobabeb

The EM27/SUN spectrometer as used by COCCON has been described in great detail in the works of Gisi et al. (2012), Frey

et al. (2015) and Hase et al. (2016). As a concise summary, the EM27/SUN is a solar-viewing Fourier transform infrared (FTIR)

spectrometer measuring in the near infrared spectral range (5500 - 11000 cm−1) with a spectral resolution of 0.5 cm−1. One90

measurement takes 58 s and consists of 10 individual double-sided scans. This allows the retrieval of total column abundances,

VCgas, of the target gases O2, CO2, CH4 and H2O. In 2018 the spectrometer used in this study was upgraded in Karlsruhe

and a second, extended room temperature (RT) InGaAs detector (4000 - 5500 cm−1) was added, allowing the detection of

CO. During this service at KIT, the gold coating of the tracker mirrors was found to be degraded and therefore was removed

(the mirror substrate is aluminium, so the operation was continued with aluminium mirrors since then). Finally, the mechanical95

parts of the solar tracker attached to the spectrometer was serviced, as the very fine wind-blown dust particles tend to enter the

motor stages during longer operation in the desert.

The retrieved total column abundances of the trace gases are converted into column-averaged dry air mole fractions (DMFs),

where the DMF of a gas is denoted Xgas = V Cgas

V CO2
× 0.2095. Here, both the column amounts of the target gas and O2 are

derived from the same spectroscopic observation reducing several potential error sources (Wunch et al., 2010). Furthermore,100

the dependence on the ground pressure is reduced improving comparability between different sites. A sensitive measure of

the stability of a spectrometer is the column averaged amount of dry air (Xair) because for Xair there is no compensation of

possible instrumental problems, in contrast to Xgas, where errors can partially cancel out. Xair compares the measured oxygen

column (VCO2 ) with surface pressure measurements (PS):

Xair =
g

PS
·
(
V CO2 ·µ
0.2095

+V CH2O ·µH2O

)
(1)105

Here µ and µH2O denote the molecular masses of dry air and water vapour, respectively, g is the column averaged gravi-

tational acceleration and VCH2O is the total column of water vapour. The correction with VCH2O is necessary as the surface

pressure instruments measure the pressure of the total air column, including water vapour. Sudden changes in Xair indicate

instrumental problems, e.g. errors with the surface pressure, pointing errors, timing errors or changes in the optical alignment

of the instrument.110

Frey et al. (2019) present a comprehensive characterization for EM27/SUN spectrometers used by the COCCON network,

which included the instrument serial number 51 deployed in Gobabeb. In short, the instrumental line shape (ILS) of the

EM27/SUN was optimized and characterized using open-path measurements as described in Frey et al. (2015), using version

14.5 of the LINEFIT retrieval software (Hase et al., 1999). Other detrimental effects, for example double-passing or channeling,

were corrected if found. For more details see section 4.2 of Frey (2018). After this initial check in December 2014 side-by-side115

measurements with the reference EM27/SUN and the nearby TCCON instrument were performed on the observation platform

of the Institute for Meteorology and Climate Research (IMK-ASF) at the Karlsruhe Institute of Technology (KIT), Campus

North (CN) near Karlsruhe (49.100◦ N, 8.439◦ E, 133 m a.s.l.). These measurements took place from November 2015 to March

2016 and once more in 2018 and 2019 in order to trace the results to TCCON (and thereby the WMO scale). This rigorous
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calibration routine is necessary in order to fulfill the high precision and accuracy requirements for GHG measurements. After120

the initial alignment check, no realignment was performed during the whole observation period.

The data analysis is performed differently from Frey et al. (2019). Spectra are generated from the raw interferograms (IFGs)

using a FORTRAN 2003 preprocessing tool developed in the framework of the COCCON-PROCEEDS project and extensions

(http://www.imk-asf.kit.edu/english/COCCON.php) of the European Space Agency (ESA). The IFGs are read from the OPUS

file, the solar position is calculated, a correction for direct current (DC) fluctuations following Keppel-Aleks et al. (2007) is125

performed, the IFGs are truncated to the nominal resolution of 0.5 cm−1, a numerical apodization function is applied and a

fast Fourier transformation including a phase correction routine and resampling scheme is implemented. Several quality filters

are applied, for example requiring a minimum DC level, and restricting the tolerable DC variation in the IFG or the centerburst

location in the IFG.

For the retrieval of the EM27/SUN spectra we do not use the PROFFIT 9.6 retrieval algorithm (Schneider and Hase, 2009; Kiel130

et al., 2016; Chen et al., 2016). Here we use the recently developed non-linear least-squares PROFFAST retrieval algorithm

which fits atmospheric spectra by scaling a priori trace gas profiles. PROFFAST is a new efficient line-by-line forward model

and retrieval code dedicated for COCCON data analysis. It is a source-open code accessible without restrictions and is designed

to be numerically efficient and simple to use. Evaluation of data quality achieved with a COCCON spectrometer operated in

Finland including the PROFFAST data analysis chain has been investigated in the framework of ESA’s FRM4GHG project and135

results are reported by Sha et al. (2019). The analysis of 4 years of Gobabeb data consisting of around 120000 spectra took

about 40 h, which is approximately 30 times faster than the previously used PROFFIT 9.6 retrieval algorithm. In order to be

consistent with TCCON, the GGG2014 generated a priori files (Wunch et al., 2015) are used as a priori profiles, for trace gases

as well as for temperature and pressure. The ground pressure was recorded using a MHB-382SD data logger with a pressure

accuracy of 3 hPa (> 1000 hPa) or 2 hPa (< 1000 hPa). We use the spectroscopic line lists and retrieval windows as described140

in Frey et al. (2019). The resulting XCO2 and XCH4 products are bias-corrected with respect to TCCON based on long-term

comparisons between COCCON data products analysed with PROFFAST and official TCCON data products from Karlsruhe

(2014 - ongoing) and Sodankyla (2017 - 2019). In the future it is planned to incorporate comparisons from additional stations

to improve the basis of the bias-correction. For Xair a scaling factor of 0.9737 is derived from the long-term observations

performed in Karlsruhe and Sodankylä centering the Xair data around 1.145

2.3 TCCON Reunion Island and Lauder

Measurement procedures and data analysis at both sites follow TCCON protocol (Wunch et al., 2011) using the GGG2014

software package (Wunch et al., 2015). As required by TCCON, the instrumentation consists of a high-resolution FTIR spec-

trometer, model BRUKER IFS 125HR, which offers a maximum spectral resolution of 0.0035 cm−1. The instrument is housed

inside a temperature-controlled building. The TCCON station in Reunion Island, France (20.901◦S, 55.485◦E, 87 m a.s.l.) is150

located on the university campus of the Université de La Réunion in St. Denis, approximately 2000 km east of the African main-

land. The data are available via De Mazière et al. (2017). The TCCON station at Lauder, New Zealand (45.038◦S, 169.684◦E,

370 m a.s.l.) is situated in a sparsely populated environment on the South Island of New Zealand (Pollard et al., 2017). The
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data are available via Sherlock et al. (2014); Pollard et al. (2019). In October 2018 a new TCCON instrument was installed at

Lauder. For this study we combine the data sets of both spectrometers and for the overlap period (October 2018) we use the155

data from the old TCCON instrument.

2.4 GOSAT specific target observations

A detailed description of the GOSAT instrumental features and data analysis is given in Kuze et al. (2009) and Yoshida et al.

(2013). GOSAT detects shortwave-infrared radiation in three narrow bands (0.76, 1.6 and 2.0 µm) with a resolution of 0.2

cm−1. Additionally it is equipped with a sensor measuring in the thermal infrared range. The TANSO-FTS footprint diameter160

is about 10.5 km at sea level. The nominal single-scan acquisition time is 4 s. For this study the GOSAT FTS Short Wave

InfraRed (SWIR) Level 2 data version V02.81 from NIES is used. The satellite is flying at an altitude of 666 km with a

repeat cycle of 3 days. Starting May 2016, GOSAT performed specific target mode observations over Gobabeb by performing

observations at three distinct points, see Fig. 1. Directly at the Gobabeb COCCON site, approximately 10 km north east over

the gravel plains and around 10 km south west over the sand desert. These points were chosen because of their different surface165

reflectance in order to study the sensitivity of the GOSAT retrieval with respect to the surface albedo. The satellite performed

measurements with different gain settings, M-gain and H-gain. M-gain soundings are generally performed over surfaces that

are bright in the near infrared. For M-gain observations other validation sites with ground-based FTIR measurements are sparse

(Yoshida et al., 2013; Velazco et al., 2019).

2.5 CAMS global CO2 and CH4 atmospheric inversion products170

The CAMS model has been described previously in great detail, e.g. (Agustí-Panareda et al., 2014; Massart et al., 2016; Inness

et al., 2019). Here we utilize the CAMS global inversion-optimized column-averaged dry air mole fractions for CO2 and CH4.

For CO2, we use an inversion product FT19r1 (Chevallier, 2020a) assimilating OCO-2 satellite observations (O’Dell et al.,

2018; Kiel et al., 2019) as well as an in situ driven inversion product v18r3 (Chevallier, 2019). More details can be found in

Chevallier et al. (2019); Chevallier (2020b). For CH4, an inversion product v18r1s assimilating a combination of surface and175

GOSAT satellite observations (Detmers and Hasekamp, 2016) as well as one product v18r1s using only surface observations

are analyzed (Segers and Houweling, 2020a). A description of the inversion procedure together with comparisons against

independent observational data sets is given in Segers and Houweling (2020b).

3 Measurement results

3.1 Side-by-side measurements at Karlsruhe180

ILS measurements were carried out seven times since December 2014. The modulation efficiency (ME) at maximum optical

path difference (MOPD) ranges between 0.979 and 0.986 with a mean value of 0.983 and a standard deviation of 0.002. The

mean phase error is 0.0019 ± 0.0003. No drift is apparent and the ILS is stable. The spread in the ME is in good agreement
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with the error budget of 0.003 given in Frey et al. (2019). This high instrumental stability is remarkable and not self-evident.

Between the measurements the EM27/SUN was shipped from Karlsruhe to Gobabeb, including airlift and transport by car on185

bumpy gravel roads.

Between November 2015 and March 2016 side-by-side comparison measurements were conducted on eight days together with

the reference EM27/SUN to derive calibration factors for the different trace gases for this spectrometer and thereby removing

possible instrument-dependent biases. Some data had to be filtered out due to different reasons. Because most measurements

were performed during winter, the solar elevation was low, which sometimes led to a partially obstructed view due to railings190

and a metal frame on the terrace where the observations took place. In the morning the first measurements were omitted due

to unusually high scatter caused by the quickly changing temperature of the not frequency-stabilized HeNe laser, as already

reported by Gisi et al. (2012). In rare cases, the tracking software failed, resulting in corrupted spectra, that were also filtered

out. For this analysis only observations from the two instruments performed within one minute and solar zenith angles (SZAs)

below 85◦ are taken into account, resulting in 1209 coincident measurements. The results are shown in Fig. 2. The derived195

instrument-specific calibration factors are 1.0002± 0.0003 for XCO2, 1.0005± 0.0004 for XCH4, 1.0011± 0.0029 for XH2O

and 0.9995 ± 0.0005 Xair between the reference instrument and the instrument deployed in Namibia. Although the scaling

factors are close to nominal for all species, to avoid biases due to instrumental differences these calibration factors are taken

into account in the analysis of the Namibia data set.

Additional side-by-side measurements were performed in February and March 2018 after the instrument came back from200

Namibia as well as between November 2018 and February 2019 after the dual channel upgrade and mirror exchange. The

combined results are shown in Appendix A. A slight variation in the calibration factors is detectable, for XCH4 and Xair the

change is significant at the 1 σ level. The numeric values for the scaling factors are 1.0004 ± 0.0004 for XCO2, 0.9989 ±
0.0004 for XCH4, 0.9988 ± 0.0016 for XH2O and 1.0031 ± 0.0007 for Xair. For the period between November 2018 and

February 2019 we also derive a calibration factor of 0.9940 ± 0.0050 for XCO. As the bias between the calibration factors205

obtained during the two side-by-side measurement periods is within 0.1 ppm for XCO2, 3 ppb for XCH4 and 3 ppm for XH2O,

for the analysis of the Namibia data we will only use the mean calibration factors derived from these observation periods.

3.2 Gobabeb Xgas time series

For the subsequent analysis only observations with SZAs not exceeding 80◦ are taken into account, resulting in 113049 indi-

vidual measurements on 319 days between 2015 and 2019. In Fig. 3 we present the XCO2, XCH4, XCO, XH2O and Xair210

retrieval results from the COCCON Gobabeb observations. For better visibility, daily mean values are shown. Error bars denote

the 1 σ standard deviation of the daily mean values. For XCO2, the underlying trend of about 2 ppm / year can be seen. Corre-

spondingly, a daily minimum value was observed at the beginning of the measurements on 24 January 2015 with 394.3 ± 0.2

ppm and the maximum daily value was observed on 15 October 2019 (410.6 ± 0.2 ppm). A seasonal cycle is also detectable,

with a peak-to-peak amplitude of 5.3 ppm in 2017. Here it is calculated as the difference between the maximum monthly mean215

of 404.0 ± 1.1 ppm in September and the minimum monthly mean of 398.0 ± 0.5 in March. This amplitude is higher than

observed in other southern hemisphere TCCON stations in Australia and New Zealand (Deutscher et al., 2014), owing to a
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rather sharp drawdown of XCO2 in February and March 2017. However, this is probably a real signal as the impact of the

biosphere in Africa might lead to a larger seasonal cycle in Gobabeb. Also Olsen and Randerson predict a rather prominent

XCO2 seasonal cycle on the order of 5 ppm in southern Africa, see Figure 5 of Olsen and Randerson (2004). For XCH4, daily220

mean values range between 1759 ± 1 ppb (2 June 2015) and 1828 ± 1 ppb (25 June 2019). The trend is roughly 0.01 ppm /

year. The XCH4 seasonal cycle has lowest values in southern hemispheric summer (January 2017: 1783 ± 5 ppb) and highest

values throughout winter and early spring (September 2017: 1808 ± 5 ppb) resulting in a peak-to-peak amplitude of 25 ppb.

Regarding XCO, the time series is limited to 2019 due to the fact that the dual channel upgrade was only performed in 2018.

At this point, it can already be seen that this site observes highly variable amounts of carbon monoxide, ranging from very225

clean background conditions with daily mean XCO values as low as 49 ± 1 ppb (16 April 2019) to elevated results of up to

131 ± 9 ppb (4 September 2019). XH2O is very low during large parts of the year, as expected for a desert site. The lowest

value was reached on 29 June 2015 (357 ± 10 ppm). During late southern hemispheric summer and early spring, XH2O can

reach up to several thousand ppm. As mentioned in section 2.2, Xair is an important parameter to monitor the instrumental

stability. For the whole time series, daily Xair results are stable within 1 %. No apparent drift of Xair is visible during the four230

years of measurements performed at the COCCON Gobabeb station.

4 Gobabeb data comparisons

4.1 TCCON Reunion Island and Lauder

In this section we compare the results obtained in Gobabeb with results from the TCCON stations at Reunion Island and

Lauder. Although this is not a side-by-side comparison, Reunion Island as the second closest TCCON station is approximately235

4000 km east of Gobabeb, this comparison will give us a measure of the feasibility of our results. The observations should

be comparable qualitatively as the variation of XCO2 is relatively low in the southern hemisphere compared to the northern

hemisphere (Olsen and Randerson, 2004). Moreover, Gobabeb (24◦S) and Reunion Island (21◦S) are roughly at the same

latitude. The TCCON station Ascension Island is slightly closer to Gobabeb with a distance of approximately 3600 km, but

the latitudional difference is larger. Due to the latitudional gradient in XCH4, we therefore chose to compare our COCCON240

measurements to Reunion Island rather than Ascension Island. Lauder is the southernmost TCCON station and functions as a

background site without a pronounced XCO2 seasonal cycle.

Daily mean XCO2, XCH4, XCO and XH2O results are shown in Fig. 4 from COCCON Gobabeb (blue dots), TCCON

Reunion Island (black dots) and TCCON Lauder (red dots) stations. Error bars denote the 1 σ standard deviation of the daily

mean values. For XCO2 we see a good agreement between the sites, given the fact that they are spatially far apart. The annual245

increase of XCO2 is similar for all stations. For Reunion Island and Lauder, no pronounced seasonal cycle is visible. Most

prominent difference is the sharp decrease of XCO2 at Gobabeb beginning of 2017, most pronounced in March. This is not

seen for the TCCON data at the two other sites. As discussed in the previous section, this is probably due to the impact of

the African biosphere to the measurements in Gobabeb. To a smaller extent this difference can also be seen at the beginning

of 2018. Despite the similarities, at the beginning of 2018 and then at the end of 2019 it can also be seen that the Reunion250
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Island values somewhat diverge from the Gobabeb and Lauder values. XCH4 at Gobabeb and Reunion sites is similar, with

lower absolute values at Lauder. The annual increase as well as the seasonal variability are similar at all sites. Opposed to

XCO2, there is no conspicuous difference between the data sets at the beginning of 2017. For XCO, the sites do not have a

long observation overlap, it seems that the variability is slightly larger in the COCCON data. Regarding XH2O, the seasonality

is similar between the sites, with highest values at Reunion Island throughout the year.255

In order to affirm that the drawdown of XCO2 at the beginning of 2017 at the Gobabeb station is due to the influence of the

African biosphere, we show 10-day backward trajectory ensemble simulations from the National Oceanic and Atmospheric

Administration (NOAA) HYSPLIT model (Stein et al., 2016) for 16 February 2017, the day with the lowest XCO2 values in

2017. Initial 3-hourly meteorological input data is provided by the NCEP Global Data Assimilation System (GDAS) model on

a 1 degree latitude-longitude grid. The end point of the trajectory analysis is chosen at a height of 5000 m above ground level.260

We choose this height because in section 4.3 a comparison between COCCON data with CAMS model data shows that the

CAMS model version assimilating total column data reproduces the XCO2 drawdown, in contrast to the version assimilating in

situ data. Therefore we think that the drawdown is driven by low concentrations of CO2 in the higher layers in the atmosphere

rather than in the atmospheric boundary layer. Backward trajectories for Gobabeb are depicted in Fig. 5. All trajectories exhibit

a long dwell time over the African continent, corroborating the conjecture that the low XCO2 values at Gobabeb are due to265

the influence of the African biosphere. In contrast, the backward trajectories for Reunion Island shown in Fig. 6 dwell almost

exclusively over the ocean.

In a next step, we show correlation plots for the COCCON site with respect to the TCCON sites for XCO2 and XCH4 in Fig.

7 and 8. Error bars denote the 1 σ standard deviation (STD) of the daily mean values. The colorbar denotes the measurement

date. Focussing first on the comparison between Gobabeb and Reunion Island in Fig. 7, we find an agreement within one270

standard deviation of the averaged daily mean values for both gases. For XCO2 a scaling factor of 1.0027 ± 0.0028 and a

correlation coefficient R2 of 0.911 are derived. For XCH4 the scaling factor is 1.0028 ± 0.0045 and R2 of 0.670. Bias and STD

in absolute values are given in Table 1. Despite this good agreement, especially for XCO2 there is some divergence between

the data before and after 2018, corresponding to larger scatter in the TCCON Reunion Island data set, as can be seen by the

larger error bars for the 2018 and 2019 data. For 2018 the reason for the increased scatter was continued mirror degradation275

as a result of sea salt deposition from the ocean. In Fig. 8 we see an excellent agreement between the COCCON Gobabeb

and TCCON Lauder data for XCO2 with a scaling factor of 0.9990 ± 0.0027 and a correlation coefficient R2 of 0.906. The

only discernible anomaly are the lower COCCON values beginning of 2017, which is also seen in the time series in Fig. 4.

Otherwise, no temporal drift between the two data sets is apparent. For XCH4 a scaling factor of 0.9800 ± 0.0060 with R2 =

0.556 is found. The large bias is to be expected due to the latitudinal gradient in atmospheric methane concentrations (Saeki280

et al., 2013).

Next, we examine several diurnal cycles for five days between Gobabeb and Reunion Island, one day each year, where data is

available for both sites. The results for XCO2 and XCH4 are shown in Fig. 9, COCCON measurements are shown as blue dots,

TCCON measurements as black dots. In contrast to other graphs, here we show local time data, for better comparability of the

diurnal cycles. For XCO2, the diurnal curvature for both COCCON and TCCON is relatively flat, however a slight parabola285
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shape is discernible. For southern hemispheric summer, compared to TCCON Reunion COCCON Gobabeb values are slightly

lower as was already seen in the time series analysis. XCH4 diurnal variations are similar for both sites, also the absolute values

are in perfect agreement. A common feature for both data sets is the apparent parabola shape on most days. This is probably

the result of a combination of non-perfect a priori profiles, residual airmass dependency and intraday changes of atmospheric

temperature. In the next version of the TCCON trace gas retrieval algorithm, updated a priori profiles will be used that will290

help to further reduce these unwanted effects. For 13 July 2015 it seems that this effect is slightly more pronounced for the

COCCON instrument. For the other days this is hard to assess as the scatter of the TCCON Reunion Island data continuously

increases with time due to degrading mirror quality. This finding is true for both XCO2 and XCH4.

4.2 GOSAT validation

In this section we validate specific target mode observations from the GOSAT satellite around Gobabeb at three distinct points295

with different surface albedo properties against COCCON Gobabeb observations. Target mode measurements started 2016

and are ongoing. The time series of the GOSAT observations is shown in Fig. 10. Measurements over the gravel plains are

displayed in red, observations directly at Gobabeb in black and measurements over the sand desert are presented in gold, with

59, 78 and 85 successful observations, respectively. In general, the agreement between GOSAT observations and COCCON

measurements is reasonable, GOSAT data seem to be slightly biased high both in XCO2 and XCH4. An interesting anomaly is300

observed in the GOSAT data, there seems to be a small decrease both in XCO2 and XCH4 during southern hemispheric winter,

which is not observed by the COCCON instrument. For a rigorous assessment the data is too sparse however. An additional

difference is that the drawdown of XCO2 values beginning of 2017 is more pronounced for COCCON compared to the satellite

data.

For a quantitative analysis, we analyze coincident observations between GOSAT and COCCON. To make the data sets com-305

parable, we correct for the influence of the different a priori profiles following Rodgers and Connor (2003). We adjust the

GOSAT values to the ensemble profile, which we assume to be the GGG2014 generated a priori profile. In Fig. 11 we present

the XCO2 and XCH4 COCCON and GOSAT averaging kernels for different SZAs. Although the COCCON averaging kernels

are shown for SZAs in the range of 0◦ and 85◦, for all coincident overpasses the SZA was between 10◦ and 50◦. Due to the

similarities of the averaging kernels, we neglect the smoothing error in the following analysis.310

The number of coincident measurements with COCCON observations are 13, 18 and 20 for the three specific observation

points and the chosen coincidence criteria is that COCCON observations were performed within thirty minutes of the satellite

overpass. Of these coincident measurements, the vast majority occurred in 2016. The correlation graphs for these three target

points are presented in Fig. 12, 13 and 14. GOSAT M-gain observations are color-coded red, while H-gain observations are

shown in blue. Error bars denote the 1 σ standard deviation of the hourly mean values for COCCON measurements and the315

measurement error for the GOSAT soundings.

For the GOSAT observations over the gravel plains, only GOSAT M-gain soundings were performed. The spread of the data set

is relatively large, GOSAT is biased high and we derive a scaling factor with respect to the COCCON observations of 1.0062

± 0.0026 and 1.0044 ± 0.0039 for XCO2 and XCH4, where the difference is statistically significant at the 1 σ level. This
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corresponds to a high bias of 2.5 ± 1.1 ppm for XCO2 and 7.9 ± 7.1 ppb for XCH4. In Table 2 and Table 3 the absolute values320

of the GOSAT - COCCON comparison are summarized. Directly over Gobabeb GOSAT M-gain as well as H-gain soundings

were performed. Between COCCON and GOSAT M-gain data we derive a scaling factor of 1.0026 ± 0.0027 for XCO2 and

1.0018 ± 0.0033 for XCH4, corresponding to a high bias of 1.0 ± 1.1 ppm for XCO2 and 3.1 ± 6.0 ppb for XCH4. For

H-Gain observations we derive a scaling factor of 0.9996 ± 0.0020 for XCO2 and 0.9984 ± 0.0016 for XCH4, corresponding

to a low bias of 0.2 ± 0.8 ppm for XCO2 and 2.8 ± 2.9 ppb for XCH4. The differences between GOSAT and COCCON325

are not statistically different at the 1 σ level. Over the sand desert, the GOSAT M-gain data are biased high with respect to

the COCCON data with a scaling factor of 1.0068 ± 0.0026 for XCO2 and 1.0070 ± 0.0045 for XCH4, corresponding to a

high bias of 2.7 ± 1.1 ppm for XCO2 and 12.5 ± 8.1 ppb for XCH4. The H-gain data are in very good agreement with the

COCCON observations with a scaling factor of 1.0003 ± 0.0008 for XCO2 and 1.0015 ± 0.0028 for XCH4, corresponding to

a high bias of 0.1 ± 0.3 ppm for XCO2 and a high bias of 2.7 ± 5.1 ppb for XCH4.330

Although not always statistically significant at the 1 σ level, clear differences are discernible between the different GOSAT gain

settings. This is in agreement with results reported by Velazco et al. (2019) and the GOSAT validation team. For the H-gain

soundings we report a good agreement with the COCCON observations within the 1 σ level for XCO2 as well as XCH4 with

high correlation coefficients (R2 > 0.9).

4.3 CAMS evaluation335

As was shown in section 4.1, the COCCON measurements exhibit a small but discernible parabola shape during the day. For

better comparability, we therefore only compare COCCON measurements around local noon with the CAMS model data.

Although using all COCCON data instead of only noon data results in only a small bias of 0.2 ppm for XCO2 and 2 ppb for

XCH4, we feel that this is the more consistent comparison. The resulting correlation plots for XCO2 and XCH4 are presented

in Fig. 15 and 16. For XCO2, note that the OCO-2 assimilated data is available until 2019 and the in situ assimilated data is340

available until 2018. The left panel of Fig. 15 shows the OCO-2 assimilated model data. We see an excellent agreement between

the two data sets with a bias of 0.9 ± 0.5 ppm and a correlation coefficient R2 of 0.983. This offset agrees well with the bias

between CAMS model and TCCON data presented in Chevallier (2020a). We do not observe an increased bias at the beginning

of 2017. This means that the OCO-2 assimilated model reproduces the drawdown of XCO2 seen in the COCCON time series

in Fig. 3 during this time. In contrast, we see an increased bias during the beginning of 2017 in the in situ assimilated data in345

the right panel. Apart from this anomaly, the agreement between the two data sets is good. The CAMS model has a high bias

of 1.1 ± 0.6 ppm and R2 = 0.927. The absolute values of the CAMS model evaluation are depicted in Table 4.

For XCH4, both the combined GOSAT and in situ assimilated data as well as the in situ assimilated data are available until

2018. The GOSAT and in situ assimilated CAMS data exhibit a low bias of 2.4 ± 8.0 ppb, R2 = 0.455. From end of 2016 to

beginning of 2017 an anomaly is discernible with higher CAMS values. This is not seen in the comparison with the in situ350

assimilated dataset. The anomaly corresponds to a period of increased scatter in the GOSAT and in situ assimilated CAMS

timeseries itself. Therefore we attribute this anomaly to the influence of the GOSAT observations. For the in situ assimilated

data we find a low bias of 5.8 ± 4.8 ppb and R2 = 0.645. This is consistent with the low bias of CAMS with respect to TCCON

11

https://doi.org/10.5194/amt-2020-444
Preprint. Discussion started: 27 January 2021
c© Author(s) 2021. CC BY 4.0 License.



measurements in the latitude band between 20◦S and 30◦S of around 10 ppb, as shown in figure 17 of Segers and Houweling

(2020a).355

5 Conclusions and Outlook

We present measurements from a new ground-based remote-sensing COCCON station in Namibia, the first FTIR site measur-

ing GHGs on the African continent. We performed a thorough calibration scheme carried out in Karlsruhe in order to make

results traceable to TCCON (and thereby the WMO scale), including ILS measurements and side-by-side comparisons with

a reference COCCON spectrometer. The results from Namibia show typical global annual increase rates for both XCO2 as360

well as XCH4. In contrast to comparable FTIR measurements in the southern hemisphere, we observe a pronounced seasonal

variability for XCO2 with a peak-to-peak amplitude of 5.3 ppm in 2017, in agreement with OCO-2 assimilated CAMS model

data and global transport model predictions (Olsen and Randerson, 2004). As expected for a desert site, we observe very low

values of XH2O, with a minimum value of 357 ppm. For the whole time series, daily Xair results are stable within 1 %. No

apparent drift of Xair is visible during the four years of measurements performed at the COCCON Gobabeb station.365

To put our results in the broader geophysical context, we compare the COCCON Namibia results to measurements from the

TCCON stations Reunion Island and Lauder. Given the fact that the stations are spatially far apart, the results are in good

agreement. For XCO2 both TCCON Lauder (-0.4 ± 1.1 ppm) and Reunion Island (1.1 ± 1.1 ppm) show biases compared to

COCCON Gobabeb within the 1 σ uncertainty range and correlation coefficients R2 > 0.9. For XCH4 TCCON Reunion Island

and COCCON Gobabeb data agree within the 1 σ uncertainty range (5.1 ± 8.1 ppb) while a large bias (-35.9 ± 10.6 ppb) is ob-370

served with respect to the Lauder data. This is a direct result of the strong latitudinal gradient in total column averaged methane

concentrations. We further investigate the diurnal variations from TCCON Reunion Island and COCCON Gobabeb for XCO2

and XCH4. Both share a small but systematic downward parabola shape, probably the result of a combination of non-perfect a

priori profiles, residual airmass dependency and intraday changes of atmospheric temperature. From a comparison of the two

data sets we also deduce that the Reunion Island data set shows increased scatter during some time periods due to the degrading375

mirror quality as a result of sea salt deposition from the ocean. Compared to the TCCON results, the COCCON observations

are of comparable quality.

We show the usefulness of our station for satellite validation by comparing the COCCON results to GOSAT specific target mode

observations at three points close to or directly at the site with different surface albedos. The satellite performed measurements

with different gain settings. Ground-based validation of the different gain settings is difficult as very few sites worldwide have380

the necessary surface characteristics, further supporting the importance of this new station. We find a good agreement between

GOSAT H-gain and COCCON observations within the 1 σ uncertainty range with low biases of -0.2 ± 0.8 ppm for XCO2 and

-2.8 ± 2.9 ppb for XCH4 at Gobabeb and high biases of 0.1 ± 0.3 ppm for XCO2 and 2.7 ± 5.1 ppb for XCH4 over the sand

desert approximately 15 kilometers south-east of the station. For M-gain soundings, GOSAT measurements are always biased

high with respect to the COCCON measurements, the differences over the gravel plains and the sand desert are statistically385

significant at the 1 σ level. Thereby we show the capability of this site to validate satellite measurements for different high
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albedo surfaces.

Then we evaluate the performance of the inversion-optimized CAMS model data against our ground-based COCCON data.

For XCO2 we find high biases of 0.9 ± 0.5 ppm for the OCO-2 assimilated product and 1.1 ± 0.6 ppm for the in situ-driven

product with R2 > 0.9 in both cases. These biases are comparable to offsets between the model and TCCON data. The OCO-2390

assimilated model product is able to reproduce the drawdown of XCO2 beginning of 2017, as opposed to the in situ-optimized

product. Also for XCH4 the biases found are in line with prior model comparisons with TCCON.

With this work we show the potential of the COCCON network for satellite validation and atmospheric transport model valida-

tion. We expect that the availability of additional COCCON sites in the near future will be a great asset for future satellite and

model studies as they are easy to deploy. In the course of the ESA funded COCCON PROCEEDS project COCCON data from395

several sites will be made available via a web portal. We conclude that instruments from the COCCON network offer stable

long-term records of GHGs in remote environments and can be used to close gaps in the global distribution of ground-based

remote-sensing sites.

Data availability. COCCON data will be made available in the near future through a web portal hosted at the Karlsruhe Institute of Tech-

nology. TCCON Reunion Island and Lauder data can be obtained via: https://tccondata.org, last access: 20 October 2020. The GOSAT400

TANSO-FTS SWIR L2 data are available from the GOSAT Data Archive Service (GDAS) at https://data2.gosat.nies.go.jp/ (GDAS, last

access: 20 October 2020).

Appendix A: Calibration measurements Karlsruhe 2018 and 2019

In Fig. A1 we present the results from the calibration measurements performed between February 2018 and 2019.
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Table 1. This table presents the results of the comparison between the COCCON station in Gobabeb and the TCCON stations in Lauder

and Reunion Island. Bias and STD are given as the mean difference and one standard deviation between the coincident daily TCCON and

COCCON XCO2 and XCH4 values.

Station XCO2 Bias ± STD [ppm] XCH4 Bias ± STD [ppb] Number of coincidences

Reunion Island 1.1 ± 1.1 5.1 ± 8.1 155

Lauder -0.4 ± 1.1 -35.9 ± 10.6 241
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Table 2. This table presents the results of the comparison between the COCCON station in Namibia and the GOSAT M-gain specific target

observations. Bias and STD are given as the mean difference and one standard deviation between the coincident GOSAT and COCCON

observations.

GOSAT target point M-gain XCO2 Bias ± STD [ppm] M-gain XCH4 Bias ± STD [ppb] Number of coincidences

Gravel plains 2.5 ± 1.1 7.9 ± 7.1 13

Gobabeb 1.0 ± 1.1 3.1 ± 6.0 13

Sand desert 2.7 ± 1.1 12.5 ± 8.1 12
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Table 3. This table presents the results of the comparison between the COCCON station in Namibia and the GOSAT H-gain specific target

observations. Bias and STD are given as the mean difference and one standard deviation between the coincident GOSAT and COCCON

observations.

GOSAT target point H-gain XCO2 Bias ± STD [ppm] H-gain XCH4 Bias ± STD [ppb] Number of coincidences

Gravel plains - - 0

Gobabeb -0.2 ± 0.8 -2.8 ± 2.9 5

Sand desert 0.1 ± 0.3 2.7 ± 5.1 8
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Table 4. This table presents the results of the comparison between the COCCON station in Namibia and the assimilated CAMS model data.

Bias and STD are given as the mean difference and one standard deviation between the coincident hourly-pooled local noon COCCON and

CAMS XCO2 and XCH4 values.

Assimilation data XCO2 Bias ± STD [ppm] XCH4 Bias ± STD [ppb] Number of coincidences

OCO-2 data 0.9 ± 0.5 - 263

In situ data 1.1 ± 0.6 - 187

In situ and GOSAT data - -2.4 ± 8.0 187

In situ data - -5.8 ± 4.8 187
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Figure 1. © Google earth image (Map data: © Google, Maxar technologies) of the measurement site at Gobabeb, Namibia. The blue pin denotes

the position of the COCCON instrument. The yellow points show the positions of the GOSAT target observation points. A black circle witha

radius of 10 km has been drawn around the COCCON site for visual reference. The inset in the upper right corner shows the EM27/SUN

spectrometer at Gobabeb.
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Figure 2. Side-by-side measurements between the reference EM27/SUN and the instrument deployed in Namibia performed between

November 2015 and March 2016 in Karlsruhe. From left to right, the panels show correlation plots for XCO2, XCH4, XH2O and Xair . The

coincident criteria is that measurements for both instruments occured within one minute. The colorbar denotes the solar zenith angle. For the

analysis, only measurements with zenith angles below 85◦ are considered.
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Figure 3. Column-averaged dry air mole fraction time series for XCO2, XCH4, XCO, XH2O and Xair measured at the COCCON site in

Gobabeb, Namibia from January 2015 until November 2019. Daily mean values are shown for better visibility. Error bars denote the 1 σ

standard deviation of the daily mean values. In 2018 the instrument was upgraded with a second channel. Therefore XCO observations only

started in 2019.
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Figure 4. Column-averaged dry air mole fraction daily mean time series for XCO2, XCH4, XCO and XH2O measured at the COCCON

site in Gobabeb, Namibia (blue dots) and at the TCCON sites Reunion Island (black dots) and Lauder (red dots). Error bars denote the 1 σ

standard deviation of the daily mean values.
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Figure 5. NOAA HYSPLIT backward trajectory ensemble simulations on 16 February 2017. The source of the backward trajectories is the

COCCON Gobabeb station, 5000 m above ground level.
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Figure 6. Same as Fig. 5, but for the TCCON Reunion Island station.

31

https://doi.org/10.5194/amt-2020-444
Preprint. Discussion started: 27 January 2021
c© Author(s) 2021. CC BY 4.0 License.



Figure 7. Correlation plots between the COCCON Gobabeb and TCCON Reunion Island stations for XCO2 and XCH4 from 2015 to 2019.

Shown are daily mean values, errorbars denote the 1 σ standard deviation. The colorbar denotes the date of the measurement.
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Figure 8. Correlation plots between the COCCON Gobabeb and TCCON Lauder stations for XCO2 and XCH4 from 2015 to 2019. Shown

are daily mean values, errorbars denote the 1 σ standard deviation. The colorbar denotes the date of the measurement.
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Figure 9. Diurnal XCO2 and XCH4 comparisons for one day in 2015, 2016, 2017, 2018 and 2019 between the COCCON station Gobabeb

(blue dots) and the TCCON station Reunion Island (black dots).
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Figure 10. Column-averaged dry air mole fraction daily mean time series for XCO2 and XCH4 measured at the COCCON site in Gobabeb

(blue dots) and GOSAT observations from the three specific target observation points with different surface albedos close to Gobabeb are

shown (red dots: gravel plains, black dots: COCCON site, golden dots: sand desert). Error bars denote the 1 σ standard deviation of the daily

mean values for COCCON measurements and the measurement error for the GOSAT soundings.
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Figure 11. XCO2 and XCH4 column averaging kernels for the COCCON Gobabeb and GOSAT observations. The colorbar denotes the SZA.

For the COCCON instrument, SZAs from 0◦ to 85◦ are depicted, whereas for GOSAT only the averaging kernels for the actual measurements

are shown, with SZAs approximately between 10◦ and 50◦.
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Figure 12. Correlation plots between coincident COCCON Gobabeb observations and GOSAT measurements over the gravel plains between

2016 and 2019. For this area GOSAT only performed M-gain soundings (red dots). The red solid line is the best fit line through all M-gain

data points. The dotted black line is the 1:1 line. Error bars denote the 1 σ standard deviation of the hourly mean values for COCCON

measurements and the measurement error for the GOSAT soundings.
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Figure 13. Correlation plots between coincident COCCON Gobabeb observations and GOSAT measurements over the COCCON site be-

tween 2016 and 2019. For this area GOSAT performed M-gain (red dots) and H-gain (blue dots) soundings. The red solid line is the best fit

line through all M-gain data points, the blue solid line is the best fit line through all H-gain data points and the black solid line is the best fit

line through all data points. The dotted black line is the 1:1 line. Error bars denote the 1 σ standard deviation of the hourly mean values for

COCCON measurements and the measurement error for the GOSAT soundings.
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Figure 14. Same as Fig. 13, with GOSAT observations over the sand desert.
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Figure 15. XCO2 correlation plots between coincident COCCON Gobabeb observations and CAMS model data. The left panel shows the

OCO-2 assimilated model data, the right panel shows the in situ assimilated model data. Note that the OCO-2 assimilated data is available

until 2019 and the in situ assimilated data is available until 2018. Error bars denote the 1 σ standard deviation of the hourly mean values for

COCCON measurements.
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Figure 16. XCH4 correlation plots between coincident COCCON Gobabeb observations and CAMS model data. The left panel shows the

model data assimilated with in situ and GOSAT data, the right panel shows the in situ assimilated model data. Error bars denote the 1 σ

standard deviation of the hourly mean values for COCCON measurements.
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Figure A1. Same as Fig. 2, but for calibration measurements performed between February 2018 and February 2019.
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